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Finite difference equations are considered to solve differential equations numerically by 
utilizing minimization algorithms. Neural minimization algorithms for solving the tinite dif- 
ference equations are presented. Results of numerical simulation are described to demonstrate 
the method. Methods of implementing the algorithms are discussed. General features of the 
neural algorithms are discussed. 0 1990 Academic Press, Inc. 

I. INTRODUCTION 

Numerical computation in many disciplines, such as physics, applied mathe- 
matics, electrical engineering, biochemistry, etc., has received a great deal of atten- 
tion recently as a practical technique to understand complex phenomena that are 
almost impossible to treat analytically [ 11. Supercomputers have been built to 
speed up the calculation. Furthermore, new computing algorithms based on the 
concept of concurrent processing have been developed and implemented by con- 
necting a small number of processors. 

Recently, highly parallel neural networks have been investigated extensively to 
solve complicated problems such as pattern recognition and combinatorial 
optimization [2]. Linear simultaneous equations also have been treated by 
applying neural networks [3]. Implementation of neural networks by utilizing 
volume holographic optical interconnections have proved to be promising [4]. 

One of the most general methods of solving differential equations is to use finite 
difference equations and to solve the algebraic equations [S]. The computational 
load for solving the difference equations increases very fast as the number of dis- 
crete points becomes large. Therefore, a highly parallel algorithm to solve the finite 
difference equations is essential when a complicated problem is encountered. In this 
paper, neural algorithms for minimization are utilized to develop highly parallel 
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algorithms for solving the finite difference equations. In Section II, the basic idea of 
neural networks is reviewed, and general continuous or discrete neural minimiza- 
tion algorithms are introduced. As an example, in Section III, the differential equa- 
tion U’ =f(u) is considered to show how the neural minimization algorithms can 
solve the equation, and the result of numerical simulation of the equation U’ = u is 
described. In Section IV, general continuous and discrete neural algorithms for 
solving a wide range of complex partial differential equations are derived. In 
Section V, implementation schemes of neural algorithms utilizing high-capacity 
optical interconnecting devices are described. Characteristic features of the neural 
algorithms compared with conventional algorithms are discussed in Section VI. 

II. NEURAL MINIMIZATION ALGORITHMS 

A. Collective Computation of Neural Networks 

Neural networks consist of individual processors and interconnections between 
the processors. As an example, the schematic representation of a simple neural 
network is drawn in Fig. 1. Each processor is called as a neuron which has an 
analogy in biological neural systems. Each neuron can have two different states, i.e., 
on and off which are represented by binary numbers 1 and 0 (or 1 and - 1). The 
operation of all the neurons is the same. Typically, each neuron sums all the signals 
coming from all the other neurons through the weighted interconnections, 
thresholds the summed signal to 0 or 1 (or - 1 or l), and changes its state 
according to the thresholded output. This operation occurs at every neuron in the 
network simultaneously or randomly. Therefore, if the total number of neurons in 
the network is large, the state of the whole network consisting of the individual 
neuronal state changes dynamically, and the network exhibits cooperative effects. 
This kind of cooperative effect is very common in statistical physics. 

The neural network described above can be utilized for computation. The binary 
states of the neurons can be identified as a binary representation of some variables. 
The interconnection strenghts between the neurons may represent the information 

FIG. 1. Schematic diagram of a simple neura! network. T,,, Tik, and Tjk are connection strengths 
between the pairs of neurons (i, j), (i, k), and (j, k). 
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of the specific problem. Then, an initial trial state for the network representing the 
initial trial solution may converge to the final state of the network according to the 
neural dynamics, and it may give the solution of the problem. This method of com- 
putation is based on the collective interaction between the neurons, and it exhibits 
a high degree of parallelism. Another characteristic of the neural network is that the 
processing of each neuron is extremely simple, however, the large number of 
neurons and interconnections yields enormous computational power. 

B. Continuous Neural Minimization Algorithm 

The Hoplield model has been successfully applied for solving combinatorial 
optimization problems such as the Hitchcock problem and the travelling salesman 
problem. The Hopfield model [6] is based on the nonlinear dynamic interaction 
between globally interconnected neurons. The states of individual neurons are 
specified by their outputs Vi which range between 0 and 1. The dynamics of 
neurons, i.e., updating rules of the neuronal states, in the Hopfield model can be 
summarized as follows. In the continuous model, neurons change their states 
according to the following equations of dynamics 

dU,/dt = 1 T, V,, (2.1) 

vi = g( uih (2.2) 

where t is the continuous time which corresponds to the updating parameter, Tti is 
the interconnection strength, and g(x) is a nonlinear function whose form can be 
taken to be 

g(x) = (lP)Cl + tanh(x/xo)l, (2.3) 

which is a monotonically increasing function bounded between 0 and 1. x0 is a 
constant. Hoplield has shown that if T, = Tji, neurons in the continuous model 
always change their states in such a way that they minimize an energy function 
defined by 

E= -(1/2)~~ T,ViV,, 12.4) 
i j 

and stop at minima of this function. The updating rule represented by Eqs. (2.1), 
(2.2), and (2.3) for minimizing the energy function (2.4) is highly parallel, and it has 
been implemented by utilizing optics [7). 

The Hoplield model described above can be applied only to minimization of 
quadratic energy functions which have symmetric T matrices. However, the 
Hopfield model for arbitrary energy functions has been investigated recently [8]. 
Consider an energy function for a minimization problem that can be written by 

E = F( Vi), (2.5) 
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where F is a non-singular and bounded function of variables Vi, and the partial 
derivatives with respect to Vi are assumed to be well defined. E is assumed to be 
always positive or zero, which is valid because E is bounded. The time evolution 
of the energy function defined by Eq. (2.5) is given by 

dE/dt = 1 (aF/a Vi)(dVi/dt). (2.6) 

If the updating rule is defined by 

dUifdt = -aF/aVi, (2.7) 

vi = h( Vi), (2.8) 

where h(x) is a monotonically increasing function bounded between 0 and 1, and 
Ui is the intermediate variable, it can be proved that Eqs. (2.7) and (2.8) minimize 
the energy function as follows. From Eq. (2.8), we have 

dVJdt = h’( Ui)(dUi/dt), (2.9) 

where h’ is the derivative with respect to x. h’(x) is always positive or zero because 
h(x) is a monotonically increasing function. If the updating rule represented by 
Eqs. (2.7) and (2.8), and Eq. (2.9) is used in Eq. (2.6), we have 

dE/dt = -c h’( U,)(dU,/dt)*. (2.10) 

Equation (2.10) is always negative or zero. Therefore, the change of the energy 
function in time according to the updating rule Eq. (2.7) and (2.8) guarantees mini- 
mization of the energy function. 

C. Discrete Neural Minimization Algorithm 

The synchronous discrete neural algorithm for minimizing a wide range of energy 
functions has been developed recently [9]. The energy function is assumed to be an 
arbitrary type of polynomial function of the state variables. Real binary variables 
having values 1 and - 1 are considered as state variables. The energy function can 
be described as 

E=f’({B,, B,, . . . . B,}), (2.11) 

where B’s are the state variables and the total number of state variables is N. 
Partially synchronous minimization is considered for the most general case. 

Totally synchronous or totally asynchronous minimizations are specific examples of 
the general case. Assume that, at each step, M state variables are selected randomly, 
and minimization is carried out by updating the M state variables simultaneously 
and leaving all the other state variables unchanged. M can be any integer from 1 
to N, and the minimization algorithm becomes totally asynchronous or totally 
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synchronous if M is equal to 1 or N. A set P is defined to consist of the indices for 
the selected state variables. Another set P’ = { 1, 2, . . . . N} - P is defined to represent 
the indices of the state variables which are not changed. The updated state variables 
BI and the change of the state variables AB, satisfy the relation 

B; = Bi + ABi, (2.12) 

where ie P. The updated state variables are also binary variables having values 1 
and - 1. Therefore, the possible values of AB, are 

ABi= -2, 0, 2. (2.13) 

The incremental change in energy AE due to the updated state variables given by 
Eq. (2.12) is considered to develop an algorithm which minimizes the energy 
function described by Eq. (2.11). AE is defined as 

AE=EC(Bj, Bi}l -EC(Bi, Bi}], (2.14) 

where ie P and je P’, and utilizing Eq. (2.12), it becomes 

AE=E[{Bi+ABi,Bj}]-E[(Bi,Bj}]. (2.15) 

The first term in the right-hand side of Eq. (2.15) can be expanded as a Taylor’s 
series in several variables because E is a polynomial of the state variables. There- 
fore, the incremental energy changes AE can be written as 

AE= c 1 ... 1 (l/m!)[ABn . ..AB.] D[B,, . ..B.] E, (2.16) 
m=l ilEP imeP 

where D [ Bi, ... B,] E is a partial derivative with respective to the state variables 
Bi, . . . B, at ABi= 0 for all iE P. The total number of terms in the summation of 
Eq. (2.16) is finite because E is a polynomial. 

To reduce the products of changes in Eq. (2.16) to linear forms, the following 
relations are derived. For an arbitrary state variable B and a positive integer n, 
( AB)n satisfies 

(AB)“= (-2B)“-’ AB, (2.17) 

which can be proved as follows. If AB is zero, Eq. (2.17) is satisfied automatically. 
If AB is 2, B and B’ should be - 1 and 1 according to Eq. (2.12). In this case, the 
right-hand side of Eq. (2.17) becomes the same as the left-hand side; i.e., 

[(-2)(-l)]“-’ [2] = 2”= (AB)“. (2.18) 

On the other hand, if AB is -2, B and B’ should be 1 and - 1 according to 
Eq. (2.12). Therefore, the right-hand side of Eq. (2.17) becomes 

[(-2)(l)]“-’ [ -2]= [ -2]“, (2.19) 
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which is the same as the left-hand side of Eq. (2.17) in the case of AB= -2. 
Consider next a product of changes given by AAB,, ... AB, with an arbitrary 
coefficient A. Assume that m > 1. The product can be written as 

AABi, ~~~AB,=~A)(1/2)[-{S(A)ABil-AB,~~~~AB,)* 

+ (ABil)* + (ABiT*..AB,)*]p (2.20) 

G IAI(lP)C(ABil)* + (AB,..~ABim)21, (2.21) 

where S(A) is the sign of A. The first term in Eq. (2.20) is always negative or zero, 
and Eq. (2.21) follows. The second term in Eq. (2.21) is a product of smaller 
number of changes than the left term in Eq. (2.20). Therefore, this technique can be 
applied iteratively to reduce the product of changes in Eq. (2.20) to a sum of 
individual changes, and it is given by 

m-1 

AAB,, c 2-~(ABii)2i+2-(m-1)(ABi,)2(m-‘) . 1 (2.22) 
j=l 

Equation (2.22) can be symmetrized by considering m cyclic orderings of indices 
{ il, . . . . im}. Equation (2.22) now is given by 

+2-b- l)(ABik)*+‘) . 1 
If Eq. (2.17) is utilized, Eq. (2.23) can be written as 

where 

AABil .**ABi,,,< IAl Z(m) ‘f Bik ABik, 
k=l 

Z(m)= _ 4 
( >[ 

m~12(2j-j-1)+2(*(m-~L-m) . 

j=l 1 

(2.23) 

(2.24) 

(2.25) 

If Eqs. (2.24) and (2.25) are used in Eq. (2.16), the incremental energy change is 
given by 

dzx -C Gi ABE, (2.26) 

m=l ilEP 

x PCW4, . ..Bim]EI)+D[Bi]E]* (2.27) 
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From Eq. (2.26) it is clear that if 

Gi AB,aO for all i E P, (2.28) 

the incremental energy change is always negative or zero. Therefore, Eq. (2.28) 
updates the state variables in such a way that it minimizes the energy function in 
the limit of many iterations. For positive G,, Eq. (2.28) is satisfied if ABi is positive 
or zero. If Bi is equal to 1, Bj should be equal to 1 because ABi = 0 is the only solu- 
tion. However, if Bi is equal to -1, BI should be 1 because this makes the 
incremental energy change more negative than using the condition AB,=O. There- 
fore, if Gi is positive, the updated value becomes 1 which is the same as the sign 
of the value Gi. If Gi is negative, the above argument can be applied to show that 
the updated value for B,! becomes - 1. This is the same as the sign of Gi. If Gi is 
zero, B; can have any values. Summarizing the above result, the updating rule can 
be written as 

B; = T(G,) for all i E P, (2.29) 

where T is a unit step function defined by T(x) = 1 if x > 0 and T(x) = - 1 if x < 0. 
Equation (2.29) is the general discrete neural algorithm which minimizes energy 
functions consisting of arbitrary types of polynomials of the state variables in a 
partially synchronous way. 

III. CASE STUDY FOR SOLVING DIFFERENTIAL EQUATIONS 

A. Continuous Algorithm for u’ = f (u) 

A simple example is considered to explain how neural minimization algorithms 
described in Section II can be utilized to solve differential equations numerically. 
The differential equation is chosen as 

du/dx=f(u), (3.1) 

where f is a polynomial function of u. The finite difference equation for Eq. (3.1) is 
given by 

(U,+1- U,-,)/2h=f(U,), (3.2) 

where h is the mesh size for discretization, and U, is the discrete variable corre- 
sponding to the mesh index a. For the continuous neural algorithm, a binary 
representation for the variable U, may be given by 

u,= 5 2s-Iva/as- {(1/2)[2K- l]}, (3.3) 
s= -K 

where K and K’ are positive integers, and V,, are binary variables. 
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The energy function for the continuous model is defined by 

where A is a positive constant and the updating rule is derived from the time 
derivative 

dE/dt=x 2A[(U,+,- ua- IF9 -f(UJl wJ,+ I/aVbJPh 
abs 

- (8 u, - ,/a Vbs)/2h - af( ua)/a vbs > (dVbs/dt). (3.5) 

The expression of the intermediate variables for the updating rule given by Eq. (2.7) 
becomes 

dW,,/dt=-x2A[(U,+,- ua-d/2h-f(Uo)i wa+l/avbs)/2h 

-~au,-,/avb~)/2h-af(u,)/avb~} (3.6) 

= -2A([(U,- u,-,)/2h-+f-(Ub-,)l/2h 

- [tub+,- Ub )/2h - f ( Ub + 1) IPh 

- [tub+, - ub-mh-wb)] (df(ub)/dub)) taubiaVbs). (3.7) 

Therefore, the continuous neural agorithm for solving Eq. (3.1) consists of 

dW,,/dt= -2A{(1/2h)‘(-U,,, +2ub- ub-2)+(1/2h)[f(Ub+l) 

-f(“b-l)-(ub+,- ub-,)(dfub)/dUb)l 

+f(ub)(df(Ub)/dUb)1) taubiaVbs). (3.8) 

vbs = g( wbs), (3.9) 

where g is the threshold function given by Eq. (2.3), and the solution is given by the 
v,, (t = cc ). 

B. Numerical Simulation 

Numerical simulation of the continuous neural algorithm described in Section III. 
A was carried out to explain in detail how it works. The differential equation is 
chosen as 

du/dx = u. (3.10) 

The finite difference equation for Eq. (3.10) is given by 

(Ua+1- U,- ,)/2h = U,. (3.11) 

The binary representation for the variables U, described in Eq. (3.3) was utilized. 
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The energy function is given by 

E=CAC(U,+,-U,~,)/2h-U,12, 
0 

(3.12) 

and the updating rule can be read from Eqs. (3.8) and (3.9) as follows: 

dW,,/dt = -2A((1/2h)’ (- Ub+2 + 2Ub - Ub&2) + U&J} (au,/av,,). (3.13) 

Vbs = g( Wbs )- (3.14) 

Consider the differential equation (3.10) in the interval 0 < x < 1. The initial value 
is given by u(0) = U,. The unit interval is discretized with a step h. The discretized 
variables are U, , U2, . . . . U,, where hiV = 1. Then, the discretized form of Eq. (3.13) 
in time t without thresholding is given by 

U,(k+l)=U,(k)+24tA{[(1/2h)*(U,+,(k)-2&,(k) 

+ U,-,(k)) - U,(k)1 1, (3.15) 

where b = 1, . . . . N, k denotes the number of iterations in time, and At is the 
incremental time step for the iteration. However, Eq. (3.15) contains undefined 
quantities U- r, U, + r, and U, + 2. The values for these variables at each iteration 
are obtained by considering Eq. (3.11) 

U-,(k) = U,(k) - 2hU,,, (3.16) 

u,, I(k) = u,- I(k) + 2hU,W), (3.17) 

U,+Ak) = U,(k) + 2hCU,- I(k) + 2hU,(k)l. (3.18) 

3. 

2.7182 

2. 

1. 

k=lSO 
k=lOO 

k=75 

k=50 

k=25 

k=l 

FIG. 2. Convergence of the initial trial solution U, = 1 for i = 1 to 100. The solution was stabilized 
after 170 iterations. 
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Equations (3.15)-( 3.18) are utilized to obtain the solution for the differential 
equation. 

Computer simulation based on Eqs. (3.15~(3.18) has been performed. The 
parameters were chosen as h = 0.01, N = 100, and AtA = 0.0001. Here, AtA was 
chosen as a maximum value satisfying the condition that the final converged solu- 
tion does not depend on AtA characterizing discretization of the differential equa- 
tion (3.13) with respect to the parameter t. For simplicity, the algorithm without 
thresholding was considered, and AT&T PC6300 was used. The initial value was 
U, = 1. Two sets of values for Ui, i = 1 to N, at the k = 0 iteration step, i.e., initial 
trial solutions, were selected to show that both trial solutions converge to the 
correct solution. Figure 2 shows convergence of the trial solution given by Ui = 1 
for i= 1 to N. Another trial solution defined by Ui= 1. 5hi+ 1 for i= 1 to N is 
shown to converge to the correct solution in Fig. 3. 

C. Discrete Neural Algorithm 

Derivation of the discrete neural algorithm for solving the differential equation 
U’ = u is presented to illustrate the algorithm introduced in Section 1I.C. Totally 
asynchronous algorithm, i.e., updating one state variable at a time but randomly, 
is considered for simplicity. The energy function for the discrete model is given by 

E=C C(Ua+,- ua-,)P- Kzl*, (3.19) 

where we set A = 1. The binary representation of variables U, is chosen as 

u,= i;. 2”-I@,+ 1)/2- {(1/2)[2K- 111, (3.20) 
s= --K 

FIG. 3. Convergence of the initial trial solution CT,= l.Sih+ 1 for i= 1 to 100 and h=O.Ol. In this 
case, the initial trial solution is closer to the correct solution than the initial trial solution used in Fig. 2. 
However, the solution was stabilized after 160 iterations. 



120 LEEANDKANG 

where K and K’ are positive integers, and B,, are binary variables having values 1 
and - 1. The incremental change in energy due to the variable B,,y is 

AE= [(t-J,+, - U,+,)/2h- UC-2”-’ ABC,]’ 

+ [(Uc+2”-’ ABC,- UC-,)/2h- U,p,]2 

+ C(Uc+,- U,-2”-2 AB,,)/U- UC+,]’ 

- C(U,+, - UC+ ,)/2h - U,]’ 

- C(u,- Uc-JPh- U,-,12 

- C(Uc+2 - Uc)Ph- Uc+J2 

=2{ -(Ur+2- 2U,+ UC-,)(1/2h)‘+ UC} 2”-2 AB, 

-2(1 +2(1/2h)2} (2”-2)2 B,, AB,,, (3.2 :1) 

which gives the intermediate variable for the discrete model as 

%=wL+2- 2U,+ U,-2)(1/2h)2- UC} 2”p2 

+ 2{1 +2(1/2h)2}(2”P2)2 B,,. (3.22) 

Equation (3.22) together with the step thresholding function gives the discrete 
neural algorithm. 

IV. GENERAL FORMALISM FOR SOLVING DIFFERENTIAL EQUATIONS 

A. General Algorithms 

The general form of differential equations to be considered in this section is 
represented by 

Fi (x,, uj, d,,, uk, higher-order derivatives) = 0, (4.1) 

where I, m = 1 to M, x1 are independent real variables, and i, j, k = 1 to N, uj are 
dependent real variables, and d,u, are first-order partial derivatives, and there are 
N functions indexed by i. The functions Fi are assumed to be non-singular, and 
partial derivatives with respect to x,, uj, d,,,uk, and higher-order derivatives are 
assumed to be well defined. The finite difference method is introduced to solve 
the differential equation (4.1). The finite domain in M dimensional space for 
independent variables is discretized with a unit volume h”. A discrete index vector a 
with components a(l), I= 1 to M, is introduced to describe such a space. Each 
component a(1) represents the discrete coordinate for the individual variable xl. 
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Then, the discretized quantities corresponding to the continuous quantities can be 
written as 

xla = xl0 + a(W4 (4.2) 

U,a = +G(ah (4.3) 

DmUka= WWUJ~,,+,~- U,c,a-,,,,I 

=(l/W~ kL+m~,d,-m,,J U,,, (4.4) 
b 

Dim u,, = (D,(Dm ud), 

=D,W~,a+,,,- &,a-,W) 

=(1/2h)*x {6.+,‘+,‘,b-6.+,‘-,‘,b 
b 

-6 a-d+I’,b+ 6a-m’-,‘,b) ‘kb, (4.5) 

where 6 is a unit matrix, xIo is the initial value for th coordinate xl, m’, and 1’ are 
M-dimensional vectors satisfying the conditions m’(m) = 1 and m’ = 0 otherwise 
and l’(1) = 1 and I’ = 0 otherwise. The finite difference equation for the differential 
equation (4.1) is then given by 

Fia(X/a 9 uja 3 Dm u,ca 2 higher-order discrete derivatives) 

= FB( Vi,) = 0. (4.6) 

Continuous algorithm is considered first. The variables Ujb are continuous real 
variables. However, we may use different types of number representation of the real 
variable. Let one of the possible representations of the real number be given by 

ujb = R(Bjbr)> (4.7) 

where R is the representation function, r denotes the bits, and Bjbr are bit variables 
having two binary values 0 and 1. If Eq. (4.7) is used, the finite difference equation 
(4.6) becomes 

F,( X,, , Up, D, U,, , higher-order discrete derivatives) 

=F;a(Ujb)=F;(B,b,)=O. (4.8) 

To exploit a continuous algorithm, continuous variables Vjbr which are bounded 
between 0 and 1 are substituted with Bib, in Eq. (4.8). Then, Eqs. (4.7) and (4.8) 
become 

‘jb = R( ‘jbrh (4.9) 

Fia (Xla 7 uja 3 Dm u,a 3 higher-order discrete derivatives) 

=F:,(Ujb)=F~(Vjb,)=O. (4.10) 
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Equation (4.10) can be solved by utilizing a minimization algorithm described in 
1I.A. An energy function for Eq. (4.10) is introduced as 

E( V,,,) = A c FL*, (4.11) 
ia 

where A is a positive constant. If the energy function given by Eq. (4.11) is mini- 
mized with respect to Vibr, the solution of the differential equation is given by the 
values Vi& co ) which minimize Eq. (4.11). The time derivative of Eq. (4.11) is given 
by 

dE( Vjbr(t))ldt = 1 (aE/aVi~,)(dVi~,ldt)’ (4.12) 
ias 

From Eqs. (2.7) and (2.8), the minimization algorithm is given by 

d W,Jdt = - aEli V,, , (4.13) 

Via, = G( Wias L (4.14) 

where W,, are intermediate variables, and G is a monotonically increasing 
thresholding function bounded between 0 and 1. 

Consider the right-hand side of Eq. (4.13). It can be given by 

aqav,, = A c (aF;,'/av,,), 
kc 

and, from Eq. (4.10), 

aFi?av,, = 1 (aFl,‘,/aUjb)(aUjb/a Vias), 
ib 

and 

(aF,,2,1aujb)=aF:,faujb 

+ c [aF:cia(Dm uF)i(a(Dm up)/(aujbl 

mP 

+ C caF:,/a(~,,~,,)i~a(~,,u,)iau,~i 

m[P 

+ higher-order terms. 

If Eqs. (4.4) and (4.5) are used, we have 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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and 

am, u,,w,, 
= ww* c {Se+m’+,‘,e-6e+m,-r,,e 

-6 cd,,.,. + 6 ,-*,-,,,,>(aup,lau,b) 
=(1/2h)2 ~jp{6c+m'+l',b-bc+m'--l',b 

-6 e--m'+,'.b+~c--m'-,I',b). 

Substituting Eqs. (4.18) and (4.19) into Eq. (4.17), it becomes 

+I CaF-:,la(D,u,)1(1/2h)6jp(Bc+,‘,b-6,-,’,b) 
mP 

+ C CaF~,/a(D,,“,)1(1/2h)2 djp{bc+mr+l’,b 

mlP 

-6 e+m’-l’,b -6 e--m’+l’,b+~c-m’-,I’,b} 

+ higher-order terms 

= aF:,laujb 

+I [aF:,/a(D,Uj~)l(1/2h>(S,+,:b-6,~,:b) 

m 

+I [aF:,/a(D,,U,)1(1/2h)2 &+d+l’,b 

ml 

-6 c+m’-f’,b -6 e-m’+I’,b+6e-m’-,‘,b} 

+ higher-order terms. 

From Eqs. (4.16) and (4.21), Eq. (4.15) becomes 

aE/a v,, = A 1 aF:,/auib 
jbke 

+c [aF~,/a(D,uj~)l(1/2h)(6,+,:b-6,-,:b) 
m 

+I CaF:,/a(D,,Uj=)1(1/2h)’ (&+m’+,‘,b 
ml 

-6 c+m’-t’,b -6 c~m’+I’,b+Be--m’--[‘,b) 

+ higher-order terms (aUjb/aVi,,,) 
1 

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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= A c 8F:,laU, 
kc 

+I (‘/“)(‘,~,,,,-‘,+,,,,)C’F~,I’(‘,’i~)l 
m 

+c w2~)* (Sa--m’~I’,c-6a~m,+r,,c 
ml 

-6 P+m,-I.,r+~n+m,+,,,c)CaF:,la(o,,u,)l 

+ higher-order terms (au,/8 Vi,,), (4.23) 

where Eq. (4.9) was used to sum over j and b, and a and c in the unit matrices 6 
were rearranged. Utilizing the relations (4.4) and (4.5) in Eq. (4.23), the algorithm 
for solving the differential equation is finally given by 

dW,Jdt = -A 1 a(F;:,)/Z’, 
k 

+ 1 o,,Ca(F:,)/a(o,,u,)l 
ml 

+ higher-order terms (8 U,/a Vi,,s), (4.24) 

and 

J’,, = ‘3 W,, ). (4.25) 

Discrete formalism for solving differential equations is based on the discrete 
neural minimization algorithm developed in Section 1I.C. The finite difference equa- 
tion for the differential equation (4.1) is given by Eq. (4.6). However, the binary 
representation of the variables U, is achieved by using binary variables having 
values 1 and - 1. For example, Eq. (3.20) can be used. Therefore, the energy 
function for the discrete algorithm is given by 

Wja,) = 1 U&J*, (4.26) 
ia 

where Bjbn are binary variables having values 1 and - 1. The discrete algorithm can 
be obtained by using Eqs. (2.27) and (2.29). 

B. Boundary Conditions 

Dynamical equations, i.e., updating rule, which yield solutions for differential 
equations have been developed. However, the initial or boundary conditions of the 
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differential equations have not been considered. In this section, the method of 
incorporating the initial or boundary conditions in the updating rule is discussed. 

First, it is shown that initial conditions can be considered as boundary condi- 
tions. As described in Section III.B, consider a first-order differential equation of 
one independent variable x. The initial condition may be written as u(xO) = ZQ,, 
where u is the dependent variable and x0 is the initial point. In this case, the final 
point x1 should be specified to solve the differential equation numerically. There- 
fore, if 0 and N+ 1, which correspond to discretized coordinates of x0 and x1 + h, 
are selected as the boundary points, the variables of the problem are U(l), 
WI, .**, U(N) and the boundary conditions are given by U(0) and U(N+ 1). In this 
case, U(N+ 1) is not a fixed value but varies subject to the original finite difference 
equation. Therefore, U(N+ 1) can be written as a function of U(O), U(l), . . . . U(N). 

Boundary conditions including initial conditions can be incorporated as follows. 
First, select the boundary for a problem. Then, the domain surrounded by the 
boundary is discretized. The boundary values are assigned to the discrete variables 
for the boundary points. However, the dynamical equations presented in 
Section 1V.A are chosen only for the variables inside the boundary. The values for 
the boundary variables are supplied by utilizing the finite difference equations at the 
boundary at each iteration. 

V. IMPLEMENTATION OF NEURAL ALGORITHMS 

In this section, possible implementation schemes of the neural algorithms are 
presented. As discussed in Section II.A, one of the most important characteristics in 
the neural network is the interconnection between neurons, because the individual 
neuron performs a simple operation. Therefore, the collective computational 
properties emerge as a result of large number of neurons and interconnections 
between the neurons. Electrical implementation of a large number of interconnec- 
tions, for example, lOI* interconnections,, is very difficult. However, optical 
implementation is very attractive to overcome the difficulties encountered in electri- 
cal implementation. 

Optical implementation of the neural algorithms for solving differential equations 
is based on interpreting the algorithms equations (3.8) and (3.22) as follows. Con- 
sider a two-dimensional optical wave propagating in free space. At each iteration, 
the discretized independent variable V,, (continuous model) or B,, (discrete model) 
is represented by the light amplitude in a two-dimensional optical wave at each 
resolution point which is identified as a neuron. Then, at each neuron, the inter- 
mediate variable W,,, is obtained by simply multiplying and summing I’,, (or B,,) 
from other neurons, i.e., neurons interconnected to the neuron represented by bs’, 
according to Eqs. (3.8) or (3.22). Here, interconnections are achieved by optical 
volume holograms. Multiplication and summation can be implemented optically or 
electronically. The updated values for the neurons are obtained by thresholding the 
intermediate variables. Thresholding can be performed by using nonlinear optical 
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phenomena [ 101 or an electronic method. Finally, the updated values for the 
neurons represented by a two-dimensional optical wave are fed back to the incident 
port of the optical system. Gain is included in the feedback loop to compensate 
the loss. The solution of the differential equation is obtained when the iteration 
converges. The above scheme of optical implementation is illustrated in Fig. 4. 

Optical implementation of the interconnection based on volume holography 
utilizing photorefractive crystals has been extensively investigated [4]. The motiva- 
tion for using volume holograms comes from their ability to store information in 
three dimensions. Using volume holographic technique, it is possible to impress a 
grating pattern into such a crystal so as to transfer a light signal from an input 
point to another point in an output plane. Another input-output connection can 
similarly be implemented by a second grating oriented inside the crystal at a dif- 
ferent angle from the first one. The maximum number of connections that can be 
specified if a volume hologram is used is upperbounded by the degrees of freedom 
available in the volume of the crystal which is equal to V,/A3, where VH is the 
volume of the hologram and 2 is the optical wave length. As a numerical example, 
consider an optical wave with wavelength lpm, a 1 cm square input plane. and 1 cm 
cube volume holograms. Then, the total number of neurons which can be processed 
in the system is lo’, and the total number of interconnections becomes 10”. 

The proposed optical system fully exploits the advantages of optical parallel com- 
puting. It makes use of a two-dimensional optical wave to represent discretized 
independent variables. High-capacity volume holograms are used to interconnect a 
huge number of variables. Furthermore, the system is one of the most parallel 
systems that can be implemented to solve the finite difference equations. The total 
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1. 

FEEDBACK 

FIG. 4. Optical system for solving differential equations. Mirrors and beam splitters for the optical 
wave arc not drawn. 
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number of interconnections may be reduced in actual implementation due to the 
Bragg cone effect, higher-order cross-talk effects, and material quality. However, 
10” interconnections seem to be feasible. 

VI. DISCUSSIONS 

The main purpose of this paper is to introduce the concept of neural networks 
and to develop neural algorithms for solving differential equations. The detailed 
analysis on the algorithms will be published separately. However, general features 
of the neural algorithms will be discussed in this section. The remarkable collective 
computational properties such as recognition from partial input, robustness, and 
error-correction capability have been demonstrated recently. As an example, 
Hoplield introduced associative memory in the neural network described in 
Section 1I.A. The memory vectors @“I, where i represents the neurons and m 
describes the number of memory vectors, are stored in the weight of the inter- 
connections as T.. = C BP’B!“’ summed over the memory vectors. The computa- 
tional function o/the Hdplieid neural network is to reconstruct the whole original 
memory given an initial partial memory. In simulations, correct convergence was 
obtained for the total number of four memory vectors in the case of 30 neurons 
when the initial trial memory vector differed from the original memory vector by 
seven bits [6]. Therefore, the radius of convergence of the neural network is in 
general very large. This property is very important in solving differential equations. 
In conventional algorithms, a good initial guess of the solution is essential in 
solving differential equations effectively. However, the radius of convergence in 
neural algorithms is expected to be very large, and thus, selection of an initial trial 
solution is not so sensitive. This has been demonstrated in the results of numerical 
simulation shown in Figs. 2 and 3. 

Another important characteristic of the neural network is nonlinear dynamics 
introduced by nonlinear thresholding. This property is expected to yield a large 
processing gain in neural computation. As an example, for the neural associative 
memory described above in this section, the number of iterations which yielded the 
correct original memory was approximately 5. Therefore, it is expected that the rate 
of convergence in neural algorithms is much faster than the conventional algo- 
rithms. The second property of neural algorithms which affects the rate of con- 
vergence is the collective processing inherent in the neural networks. This is because 
the greater the problem size, the more neurons participate collectively in solving the 
differential equations. To illustrate this, consider a stiff differential equation. To 
solve this equation, the number of mesh points should be very large so that dis- 
cretization of the equation is accurate and smooth. This means the total time, i.e., 
the rate of convergence, required for solving the equation increases rapidly if the 
conventional serial algorithms are used. In the neural algorithms proposed in this 
paper, the equation can be solved by increasing the total number of neurons. 
However, the time for solving the equation actually decreases even if the total 



128 LEE AND KANG 

number of neurons increases, because at each iteration all the neurons interact with 
each other in parallel, i.e., collectively. This point has been demonstrated by con- 
sidering the specific example described in Fig. 2. We solved the same problem 
assuming all the same conditions except decreasing the total number of mesh points 
between 0 and 1. Fifty mesh points instead of 100 mesh points were chosen, and h 
was 0.02 in this case. The constant AtA was 0.0001. The result of the numerical 
simulation is shown in Fig. 5. Comparing Figs. 2 and 5, it is clear that as the 
number of neurons increase, the rate of convergence decreases. Specifically, the rate 
of convergence for this example decreased by half when the number of neurons 
increased twice. The third property which decreases the time for solving differential 
equations is the optical feedback used in implementing the neural algorithms. This 
means communication between processors, i.e., neurons, is performed by the fastest 
physical method. Therefore, optical implementation reduces the computation time 
even if the total number of iterations becomes very large. 

In the above paragraph, the rate of convergence for the stiff differential equations 
has been investigated by changing the total number of mesh points, i.e., neurons. 
However, it is also important to study the rate of convergence for the stiff differen- 
tial equations maintaining the same total number of mesh points and changing the 
degree of stiffness. As an example, a differential equation du/dx = --Au was 
investigated in the interval 0 <x < 1 with initial condition u(0) = 1, where ,? is a 
positive constant and serves as a stiffness parameter. The updating rule for this case 
can be obtained from Eq. (3.8) 

U,(k+ l)= Ub(k)+2AtA{[(1/2h)* (U,+,(k)-2U,(k) 

2.7182 

2. 

k=SO 

k=l 

I I > 

0. 0.5 1. x 

(6.1) 

FIG. 5. Convergence of the same problem as described in Fig. 2 when the number of mesh points 
was decreased to 50. 
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u 

0. ~, I) 
0.5 1. x 

-1. - 

-2. 

FIG. 6. Convergence of the differential equation u’ = -0.5~. The converged solution was obtained at 
k= 138. 

which is the same as Eq. (3.15) except for the A* factor. The boundary conditions 
are given by 

U-,(k) = U,(k) + 2hMJ,,, (6.2) 

U,, I(k) = U,- 1%) - 2hJU&), (6.3) 

U,+,(k) = U,(k) - 2hA[U,- ,(k) - ZhLU,(k)]. (6.4) 

U 

FIG. 7. Convergence of the differential equation U’ = --u. The converged solution is not good 
compared with Fig. 6. 
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u 

-2.J 
FIG. 8. Convergence of the differential equation u’ = - 321. The converged solution was obtained at 

k = 156. However, the solution looks very bad compared with Figs. 6 and 7. 

Computer simulations based on Eqs. (6.1~(6.4) have been carried out for three dif- 
ferent values of A =OS, 1, and 3. The other parameters were chosen as h =O.Ol, 
N= 100, and AtA = 0.0001 for the three different values of A, which are the same 
parameters as those used in Fig. 2. The same initial trial solution for three different 
values of A were chosen as Vi(O) = 1, i= 1, . . . . 100. The numerical results are shown 
in Figs. 68. Figure 6 represents the case of A= 0.5, and the algorithm converged at 
k = 138. Figure 7 shows the result of A. = 1. The solution in this case converged at 
k = 140. However, as shown in the figure the converged solution is not good com- 
pared with the case of il= 0.5. When the stiffness parameter 1 was increased to 3, 
the algorithm converged at k = 156 as shown in Fig. 8. However, this solution is 
much worse than the case of A= 1. From this simple example, we see that the rate 
of convergence and effectiveness of the proposed neural algorithms deteriorates 
when the differential equations become stiffer and the total number of mesh points, 
i.e., neurons, are kept the same. 

Finally, the neural algorithms proposed in this paper have several advantages 
over the conventional parallel algorithms. First, the neural algorithms are much 
simpler than others. The only algebraic operations required in the neural algo- 
rithms are addition and multiplication. Inverse or other complicated logic opera- 
tions are not needed. Second, the neural algorithms are the most parallel, compared 
with conventional parallel algorithms. For example, the algorithms for a hypercube 
have limited parallelism due to a small number of interconnections. Simplicity in 
implementation of the neural algorithms is the third advantage. 

VII. SUMMARY 

Highly parallel neural algorithms for solving finite difference equations have been 
developed. They can be applied to a wide range of differential equations. Nonlinear 
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thresholding which is a characteristic of neural networks has been introduced in the 
algorithms. Implementation of the algorithms can be realized by using electronic 
processors if the order of the differential equations is low, because in this case the 
number of interconnections is very small. However, if higher-order differential equa- 
tions are considered, optical implementation is better. Finally, general features of 
the neural algorithms for solving differential equations have been discussed. 
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